

ST在大功率热管理系统中的 电机控制系统方案 HVAC、BESS和数据中心

Willem ZHENG 电机控制技术创新中心 应用工程师

议程

1 高功率冷却系统

2 10 kW PMSM电机驱动器,配备Vienna PFC、1个MCU

3 实验测试

4 ST冷却系统解决方案

高功率冷却系统

数据中心

HVAC

BESS

数据中心基础设施管理

- AI服务器,直接液冷
- 电信基站

数据中心冷却业务的市场规模(2022年)	31.4亿美元	
预测市值 (2032年)	311亿美元	
全球市场增长率 (2022-2032年)	25.8%	*1
液冷业务的市场规模(2032年)	171亿美元	

HVAC (暖通空调)

- 住宅空调系统
- 热泵
- 屋顶单元

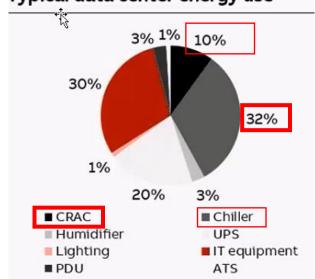
HVAC业务的市场规模(2023年)	2940亿美元	
预测市值 (2032年)	4810亿美元	*2
全球市场增长率 (2023-2032年)	5.6%	_

电网级电池储能

• 热管理,直接液冷

BESS业务的市场规模(2023年)	54亿美元	
预测市值 (2030年)	269亿美元	*3
全球市场增长率 (2023-2030年)	25.8%	

- *1 Persistence Market Research, Data center liquid cooling Market, 2022年3月
- *2 Global Market Insights Inc. HVAC Market, 2024年5月
- *3 Delvens.Battery Energy Storage System (BESS) Market, 2023年8月



用于提高冷却系统效率的电机控制和数字电源

AI服务器和HVAC需要大量电力 2030年AI消耗的电力可能占到全球电力的10%以上

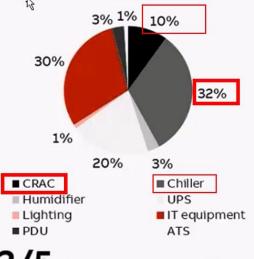
电机消耗了冷却系统中2/5的 能源

Typical data center energy use

高效的电机驱动器如何节约 能源

- 相比于IE2和IE3, IE4和IE5电机可节约5-15%的能源
- WBG材料
- · 电机变速驱动装置根据电流需求调整电机速度,节约20-60%
- 驱动装置能够根据负载(SRM)优化电机磁通量, 最多可节约20%
- 分布式dPFC,提升电能质量
- 使用系统分析进行冷却优化,节约约30%

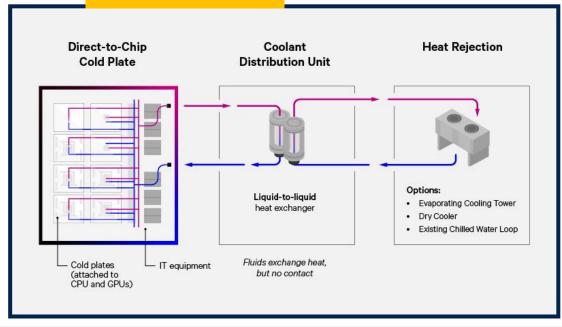
典型的1.2 MW数据中心参考设计


散热风扇 (100x 5 kW)

IT负载,计算	8个机架, 每个132 kW
IT负载,网络 和存储	10个机架, 每个10 kW
冷却拓扑	75%液冷 25%空冷
冷却负载	840 kW

冷却所需能源最高占到数据 中心总能源账单的40%*

Typical data center energy use



2/5 of energy consumed by a data center is used for cooling³.

数据中心冷却系统架构

直接芯片冷却

通过平衡热捕获属性和液体黏度来决定选择哪种液体。水的热捕获能力最强,但通常与乙二醇混合使用,这会降低热捕获能力,但黏度的增加会提高泵送效率。

Pumps

Chillers

10 kW PMSM电机驱动器 + Vienna PFC 1 MCU用于高效冷却

基于STM32G4的全平台控制: 1台电机 + 3相Vienna PFC

ST元件

STM32G431RBT6 * 1

TN4050-12PI * 1

ST3485EBDR * 1

L7912CP * 1

L6565D * 1

STFW3N150 * 1

LD39100PU33R * 1

STKNX模块* 1

对于压缩机驱动:

STGWA40M120DF3 * 6

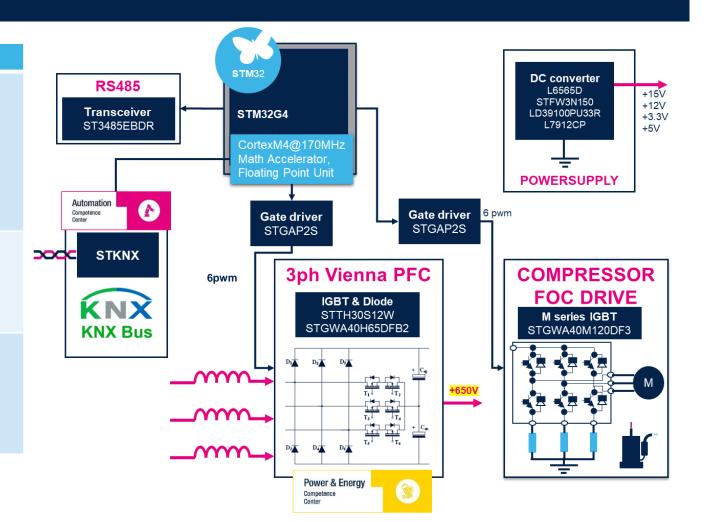
STGAP2SCMTR * 6

TSV791ILT * 1

TS391RILT * 1

对于Vienna PFC:

STGWA40H65DFB2 * 6


STTH30S12W * 6

STGAP2SCMTR * 6

TSV912A * 5

TSV911ILT * 3

STGAP2S, STGAP2SICSN/STGAP2D

1700 V电隔离单通道和双通道

STGAP2S

1700 V功能性电隔离

快速开关频率 (传播延时75 ns)

待机,SD引脚,制动引脚, 热关断保护

为SiC电源做好了准备

100 V / ns 共模抑制比

> 电流能力 4 A灌/拉

可提供生态系统和全面支持

非常稳定

STGAP2S, STGAP2SICSN

MCU

4000 V, 4A功能性隔离栅极驱动器

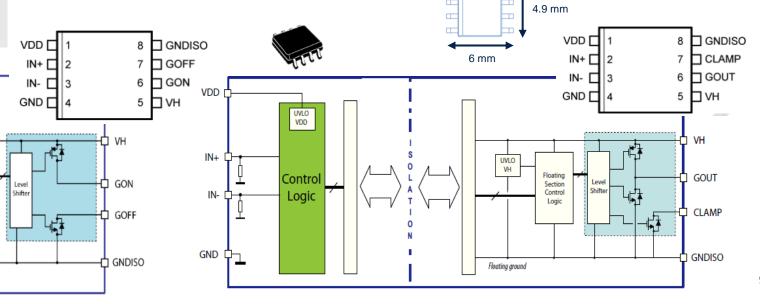
• 3V3 / 5 V逻辑输入 (逻辑阈值, VDD的1/3、2/3)

UVLO VDD

Control

Logic

UVLO


Floating ground

Floating

Section

- ・电源电压可达26 V
- ・4 A灌/拉电流能力
- 较短的传输延时: 75 ns
- UVLO功能 (Si MOS-IGBT和SiC选项)
- 待机功能
- 100 V/ns CMTI
- 基础隔离4000Vpeak
- 热关断保护

- 有源高输入引脚与有源低输入引脚,用于硬件联锁
- STGAP2SM, STGAP2SICSN: 独立的输出选项, 轻松实现栅极驱动调谐
- STGAP2SCM, STGAP2SICSNC: Miller钳位引脚选项,避免引入开启现象
- ・ SO-8封装 (窄型)

STM32G4 丰富、先进的模拟功能

混合信号SoC适用于广泛的应用

ADC (多达5个)	值
拓扑	SAR 12 位 + 硬件过采样 → 16位
采样率	高达4 Msps
输入	单端和差分
偏移和增益补偿	自动校准以减少增益和偏移

DAC (多达7个)	值
采样率	15 Msps (内部) 1 Msps (来自缓冲输出)
建立时间	16 ns

运算放大器 (多达6个)	值
增益带宽	13 MHz
电压转换率	45 V/μs
偏移	3 mV (在完整温度范围下)
	1.5 mV @ 25°C
PGA增益 (精度)	2, 4, 8, 16, -1, -3, -7, -15 (1%)
	32, 64, -31, -63 (2%)

比较器 (多达7个)	值
电源	1.623.6 V
传播延时	16.7 ns
偏移	-6+2 mV
迟滞	8步:
	0, 9, 18, 27, 36, 45, 54, 63 mV

沟槽栅场截止型IGBT系列总览

新的650 V HB2系列IGBT

以出色的性能和功率密度提升系统效率

 $T_{J} = 175^{\circ}C$

较低的V_{CESAT}, 1.55至1.65 V

裸晶片中的电流能力为15至100A

与HB系列相比, Qg更低

非常软的关断和低的电压尖峰

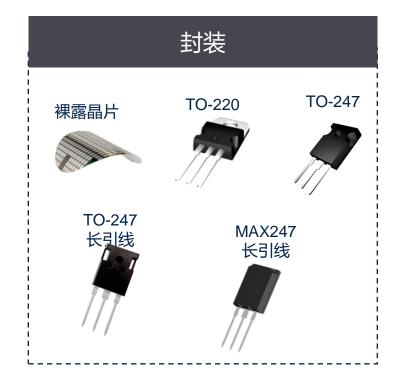
不同二极管选项 (D、DH和用于保护)

产品种类丰富

1200 V M系列IGBT

用于硬开关的低损耗M系列

 $T_J = 175$ °C

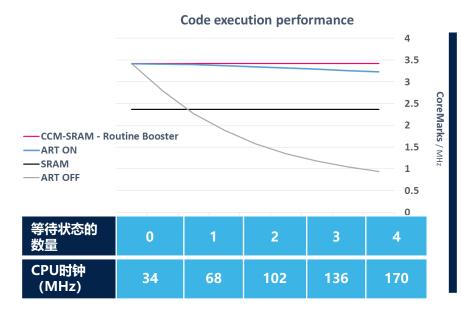

较低的V_{CESAT} = 1.7至1.85 V

电流能力: 8、15、25、40和50 A。 裸晶片中最高75 A

2至20 kHz

短路时间10 µs(*)

在TO-247、TO-247 LL和 TO-220中可用(仅8A、15A)


(*)@ $V_{CC} \le 600 \text{ V}, V_{GE} = 15 \text{ V}, T_{jstart} = 150^{\circ}\text{C}$

用于Vienna PFC + 压缩机的STM32G431 CPU负载测试结果

工作	PWM频率	控制频率	任务持续时间	CPU负荷
压缩机FOC (无传感器,1个分流电 阻)	5 kHz	5 kHz	9.5 us	4.8%
PFC VOC	40 kHz	20 kHz	28.6 us	57.1%
PFC其他任务		2 kHz	8.9 us	1.8%
压缩机,速度循环和其 他任务		2 kHz	19.8 us	4%
总计				67.7%

纯170 MHz CPU性能 (Arm Cortex®M4) , 带3个加速器

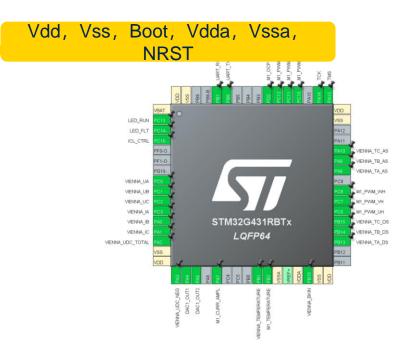
Arm Cortex®-M4带FPU

CPU频率**最高170** Mhz

最多213个DMIPS和569个CoreMark®结果

3种不同的硬件加速器:

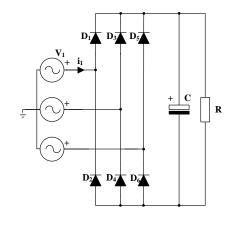
- ART加速器 (~动态缓存) →全代码加速 (平均)
- 程序执行加速器CCM-SRAM (~静态缓存) →保留决定论
- 数学运算加速器 (Cordic + FMAC)

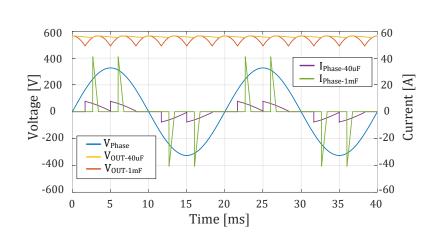


用于Vienna PFC + 压缩机的STM32G431 64引脚MCU中的所有功能

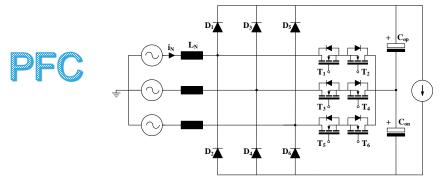
功能	数字I/O	模拟I/O	总计
压缩机	7	2	9
PFC & ICL	8	9	17
USART comm	2		2
SWD调试	2		2
其他模拟值		2	2
其他数字值	2		2
MCU功能			12
未使用	10	8	18
总计			64

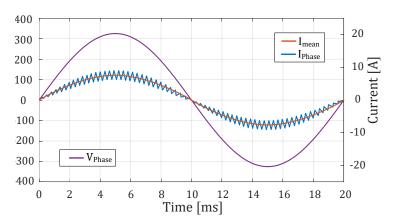
空间使用Vienna PFC + 电机控制:


Flash: 53 KB RAM:14 KB MCU的OCP & 温度检测 MCU的OCP & OVP



PFC 优势解析

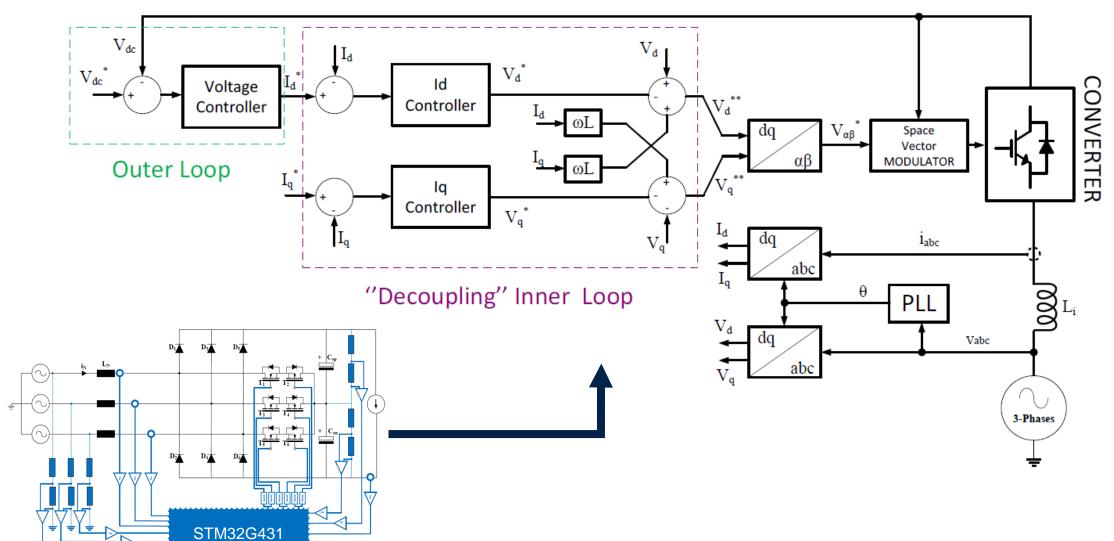

NO PFG

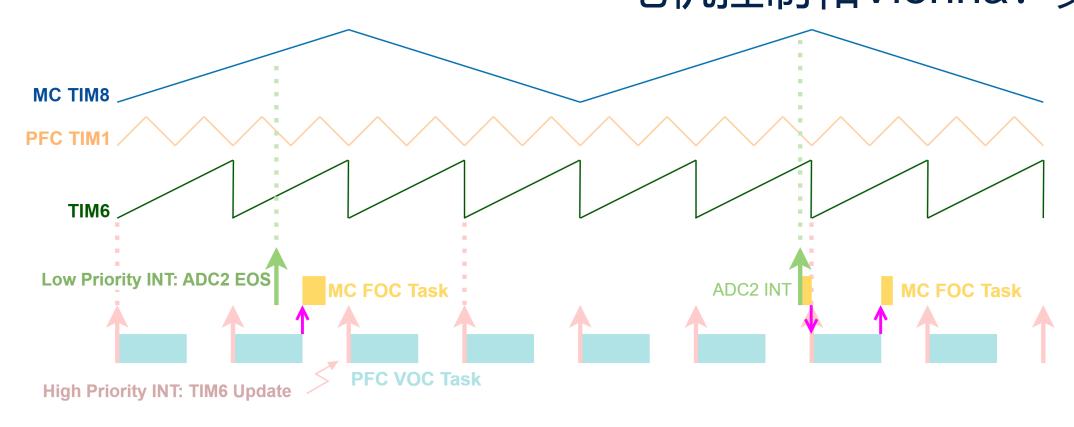


$$CF = \frac{I_{peak}}{I_{rms}} = HIGH$$

$$PF = \sqrt{\frac{\cos \varphi^2}{1 + THD^2}} = LOW$$

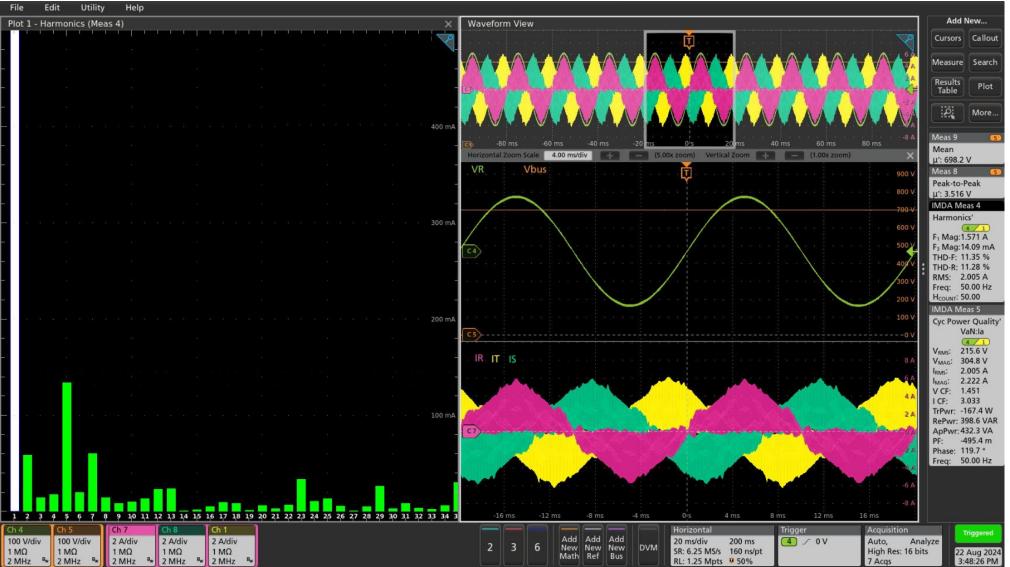
$$CF = \frac{I_{peak}}{I_{rms}} = 1.41$$


$$PF = \sqrt{\frac{\cos \varphi^2}{1 + THD^2}} = 1$$



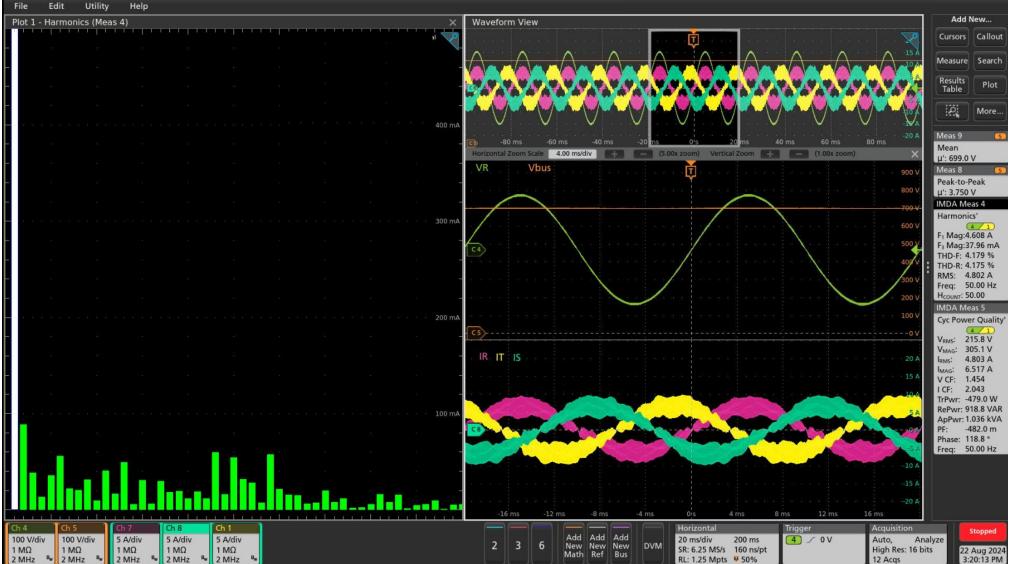
Vienna PFC 控制框图

用于Vienna PFC + 压缩机的STM32G431 电机控制和Vienna: 集成


- 1) TIM1用于PFC; TIM8用于MC
- 2) 在ADC2 INT中执行MC FOC任务, 频率为5 kHz
- 3) 在TIM6 INT中执行PFC VOC任务, 频率为20 kHz
- 4) PFC任务的优先级高于MC任务

Motor Control Competence Center

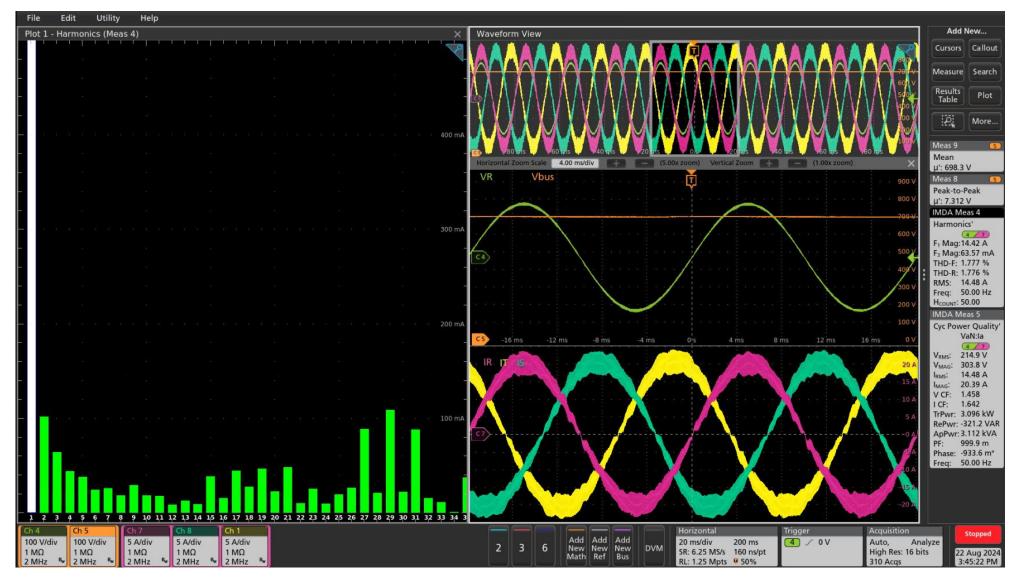
实验: Vienna PFC @1 kW



Motor Control

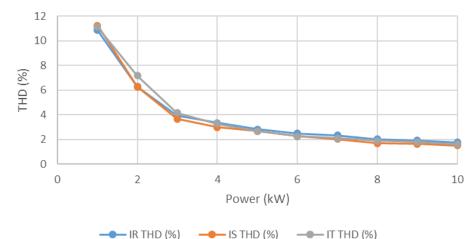
Competence Center

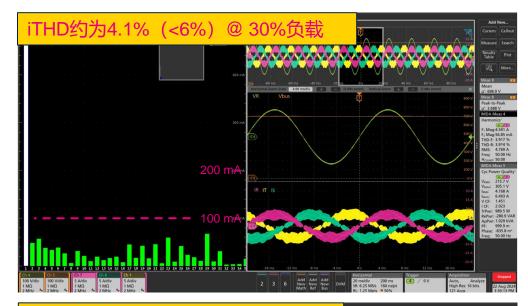
实验: Vienna PFC @3 kW

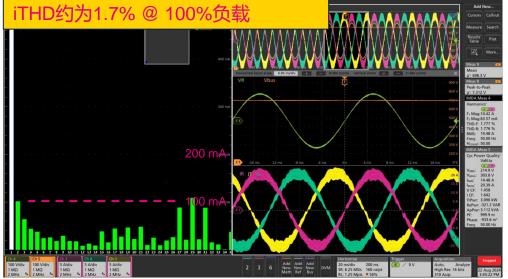


Motor Control Competence Center

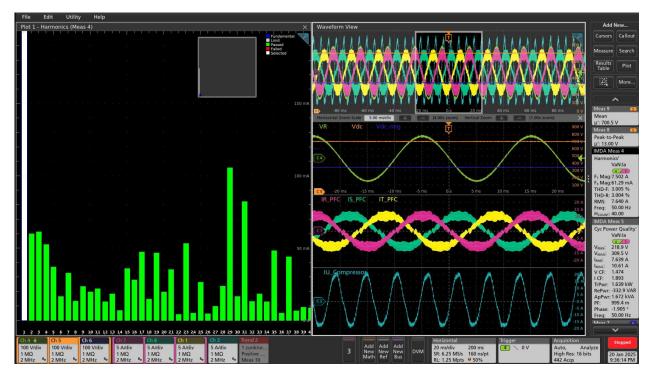
实验: Vienna PFC @10 kW

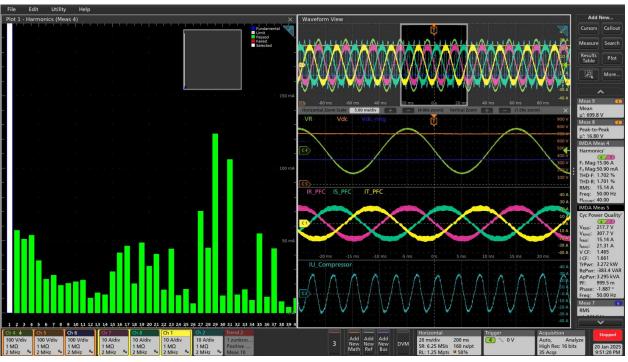



电源 **IR THD IS THD** Vbus波动 **IT THD** (kW) (%) (%) (V) (%) 10.87 11.25 11.11 3.734 1 3.562 2 6.285 6.258 7.164 3.917 3.649 4.156 3.688 3 4.094 4 3.351 2.974 3.272 5 2.833 2.678 2.665 4.703 2.257 2.254 4.781 6 2.499 2.335 2.019 2.093 5.094 2.02 1.691 1.892 5.703 8 1.917 9 1.641 1.802 6.922 10 1.777 1.493 1.6 7.312

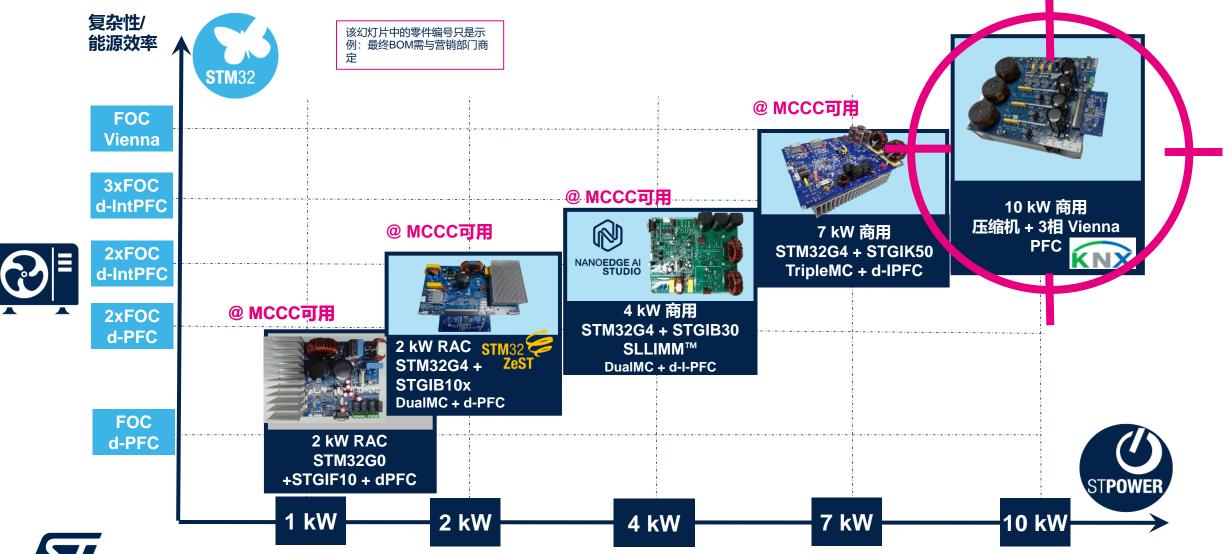

AC Current THD

life.augmented


实验: iTHD结果



实验: 压缩机

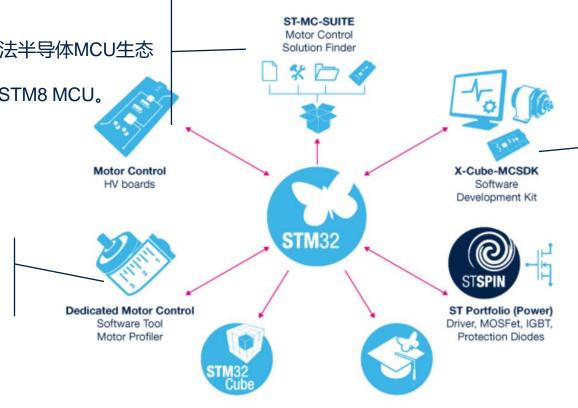

5 kW 10 kW

life.augmented

冷却系统解决方案 用于RAC、热泵、HVAC、数据中心和BESS

STM32电机控制生态系统

访问STM32电机控制专用页面: www.st.com/stm32-motor-control


电机控制套件

• 在线工具,有助于轻松访问意法半导体MCU生态 系统中的电机控制资源

• 适用于STM32、STSPIN32和STM8 MCU。

电机控制分析仪

- 自动检测关键参数 (Rs、 Ls、Ke)
- 无需任何设备
- 适用于STM32 MCU。

STM32 Cube Ecosystem Software tools Embedded software STM32 Motor Control Wiki Knowledge database FAQ, etc.

电机控制软件开发工具包 (SDK)

- 电机控制固件库: 完整的特征库
- ST电机控制工作站: 图形化配置器/监视器
- 适用于STM32、STSPIN32 MCU。

意法半导体工业电子

能以致动子网站

Thank you

了解更多信息,请访问www.st.com

